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Introduction

Breathing is vital. Its pivotal role in regulating
blood gases positions this rhythmic behavior at the
core of physiology and pathophysiology. Much has
been learned about the neural networks that gen-
erate the breathing rhythm, and several compre-
hensive reviews discuss our current understanding
(1, 7, 22, 32, 51, 103, 104, 113, 119). Reviewing the
mechanisms underlying respiratory rhythmogen-
esis is timely, since many new, and often unex-
pected, insights have been gained due to the
advent of transgenic and optogenetic approaches.
But it has been a long journey from the early dis-
covery that the isolated brain stem is sufficient to
generate a basic rhythm (2) to our current under-
standing of how the underlying networks are inte-
grated to generate breathing in the intact
organism. Along this journey, there have been
many controversies, confusions, and discussions
about where and how the respiratory rhythm orig-
inates (31, 32, 93, 106, 115, 119, 131). Indeed, sev-
eral key questions continue to be debated and
seem to remain unresolved despite a wealth of new
insights. For example, we continue to debate
whether the respiratory rhythm is based on synap-
tic inhibition, recurrent excitation, or pacemaker
properties (1, 54, 75), a topic already discussed in
1960 (125). Defining the role of the pons in re-
spiratory rhythmogenesis is another issue that
has been discussed since the early 1900s (26, 28,
71, 72). The role of inhibitory mechanisms as an
inspiratory off-switch was first hypothesized by
Euler (155) and is still considered as a possible
mechanism for rhythmogenesis (27, 33, 100,
168). Many of these questions remain unresolved
because the criteria used for rhythm generation
are vaguely defined or misunderstood. Thus the
purpose of this review is to systematically ad-
dress and define the key processes that govern
the generation of breathing in the context of our
current understanding.

On the surface, breathing appears to be a rela-
tively simple rhythmic behavior that, like locomo-
tion, controls skeletal muscles. Although breathing
can be voluntary, conscious awareness is not re-
quired for it to continuously adapt to changing
metabolic, environmental, and behavioral de-
mands. Breathing’s remarkable ability to adjust in
a cycle-to-cycle and well-coordinated manner may
be best exemplified for human speech or singing
(63) (FIGURE 1A). During the inspiratory phase
before vocalization, the amount of inhaled air is
accurately adjusted to the length of the subsequent
sentence. Inspiration must also be precisely timed
between sentences to produce seemingly uninter-
rupted speech or singing. Vocalization occurs fol-
lowing inspiration during a breathing phase
referred to as postinspiration (28, 137), when expi-
ratory airflow is precisely regulated by the dia-
phragm, upper airway muscles, and vocal cords to
produce sounds. Speech becomes more difficult
under conditions of high metabolic demand, such
as exercise (120), when breathing must become
more rapid (79), and thoracic and abdominal mus-
cles are recruited to forcefully expel air from the
lungs, a breathing phase called active expiration
(FIGURE 1B). The three breathing phases, inspira-
tion, postinspiration, and active expiration, can be
reconfigured and recombined to produce a breath-
ing rhythm that is surprisingly dynamic and adapt-
able (103). For example, during severe hypoxia,
breathing switches to gasping, a one-phase in-
spiratory rhythm (156) (FIGURE 1C).

Breathing’s complex control is often differen-
tiated into two principle processes: rhythm vs.
pattern generation (FIGURE 1, D AND E). In gen-
eral, rhythm-generating mechanisms control
breathing frequency and are involved in recon-
figuring breathing into a one-, two-, or three-
phase rhythm (103). In contrast, regulation of
tidal volume and the coordinated and differen-
tial activation of the many upper airway and
respiratory pump muscles is considered “pattern
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generation” (33). The notion of distinct rhythm-
and pattern-generating mechanisms is sup-
ported by a variety of neuronal and modulatory
properties that differentiate rhythm vs. pattern
(34, 141) (FIGURE 1D). These two principle pro-
cesses are differentially controlled by rhythmo-
genic microcircuits, premotor, and motoneuron
pools (117). However, rhythm and pattern gen-
eration are not always separate and distinct. Pro-
cesses of rhythm and pattern generation can be
interdependent such that manipulations that in-
fluence the breathing rhythm also alter its pat-
tern or vice versa (9) (FIGURE 1E). Indeed,
neuronal networks that generate the rhythm
within the CNS are generally referred to as “cen-
tral pattern generators,” which is consistent with
the notion that processes of rhythm and pattern
generation are intermingled. This review will fo-
cus primarily on rhythm generation, since it aims
to define the criteria required to be considered
“rhythmogenic.” As we discuss the neuronal
origins of mammalian breathing, we consider
fundamental principles learned in smaller, well-
characterized rhythm-generating networks of
invertebrates.

Defining a Rhythm-Generating
Network, and the Concept of a
Central Pattern Generator (CPG)

Graham Brown first proposed the concept that
rhythmic behaviors arise from specialized net-
works in the CNS, referred to as central pattern
generators (CPGs) (37, 135, 161). A CPG must fulfill
one criterion: the putative CPG needs to generate a
behaviorally relevant rhythmic activity even when
physically isolated from all other central and pe-
ripheral inputs. However, after Graham Brown’s
proposal, it took several years before convincing
evidence for a CPG was demonstrated. Adrian and
Buytendijk discovered that the isolated, completely
deafferented brain stem of the goldfish continued
to generate a respiratory-related rhythm (2); but
these experiments did not specifically identify the
region/network within the brain stem responsible for
rhythmogenesis. It took another 60 years before it
was discovered that isolated slices from the medulla
of neonatal rodents contained a small network, the
so-called pre-Bötzinger complex (preBötC), that was
sufficient to generate a breathing-related rhythm
(134).

FIGURE 1. Breathing phases arise from a combination of rhythm- and pattern-generating mechanisms
A–C: schematic of breathing phase coordination and reconfiguration during rest, speech, exercise, and severe hypoxia. A: during rest, breathing
alternates between inspiration (purple) and postinspiration (blue). Prior to speaking, the depth of inspiration (tidal volume) is adjusted to the antici-
pated length of the vocalization. Vocalization occurs during an extended postinspiratory phase. B: during heavy exercise, breathing generally alter-
nates rapidly between inspiration and active expiration (red) to match increased metabolic demands. C: during severe hypoxia, breathing
reconfigures to produce a slow one-phase inspiratory rhythm. D–E: processes of rhythm and pattern generation can be independent or interdepen-
dent. D: when independent, perturbations of rhythm (purple) do not alter pattern (black), and perturbations of pattern do not alter rhythm. E: when
interdependent, perturbations of rhythm also alter pattern, and perturbations of pattern also alter rhythm.
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Although the persistence of rhythmic activity in
isolation may seem like a straight-forward criterion
for a CPG, demonstrating its behavioral relevance
can be more difficult. One complication is that the
rhythmic output of an isolated CPG may depend
on the specific experimental context. In the pre-
BötC, not only one but three distinct types of
rhythms can be generated. The rhythm that under-
lies the inspiratory component of normal eupneic
activity and sigh activity are concurrently gener-
ated under control conditions, whereas gasping
activity is generated during hypoxia (66). These in
vitro rhythms are often cautiously referred to as
“fictive” activities since there is no actual drive to
the muscles, and they may only be a representa-
tion of the actual behavior in vivo. Furthermore, in
the intact system, a CPG will be under the influ-
ence of many neuromodulatory and synaptic in-
puts that may significantly alter the characteristics
of its rhythmic output. Thus demonstrating the
behavioral relevance of a putative CPG often re-
quires interrogating the functional consequences
of manipulating it in the context of the whole an-
imal. Indeed, the discovery of the preBötC led to
numerous follow-up studies and 25 years of in-
tense research aimed at better defining this “in
vitro” rhythm and its role in vivo (39, 78, 112, 140,

160). As a result, it is now generally accepted that
the preBötC is a microcircuit that is central to the
generation of mammalian breathing.

Defining the Neuronal Elements of
a Rhythm-Generating Network

Today, there is overwhelming evidence that CPGs
exist for most, if not all, rhythmic motor behaviors
in invertebrates and vertebrates. Yet, identifying
the CPG for a rhythmic behavior is only a first step
toward understanding how a neural rhythm is gen-
erated. Next is to identify the specific element(s)
within the CPG that make it rhythmic. As first
established in invertebrate model systems, two cri-
teria must be met to define a neuron as an impor-
tant element of a rhythm-generating network: 1) a
neuron or group of neurons must be active in
phase with the rhythm and 2) the neuron(s) need
to reset the rhythm in a characteristic phase-de-
pendent manner in response to a brief stimulus.
Neurons that fulfill these two characteristics typi-
cally also modulate the frequency of the rhythm
during a sustained stimulus and entrain the
rhythm when stimulated repetitively. These crite-
ria are illustrated for an anatomically identified
neuron in the respiratory network of the locust,
which is rhythmically active in phase with expira-
tion (FIGURE 2A, criterion 1) and resets the rhythm
when stimulated with a current pulse (FIGURE 2B,
criterion 2). The resetting characteristics of these
stimulations are visualized in a phase-shift curve
that reveals a neuron’s ability to advance or delay
the rhythm depending on the stimulus phase, pro-
viding critical insights into a neuron’s role in
rhythmogenesis (102, 108).

Whether a given neuron, neuron group, or mi-
crocircuit is obligatory for rhythmicity is often also
used as a criterion to identify rhythmogenic mech-
anisms. However, this can be a source of consid-
erable confusion. Common pitfalls associated with
this strategy are illustrated using a small inverte-
brate network, in which all neuronal elements of
the CPG are well defined (FIGURE 3A) (76). The
network diagram shown in FIGURE 3B illustrates
the connectivity of the network that generates the
pyloric rhythm within the stomatogastric ganglion
(STG) of crustacean. Within this rhythmogenic net-
work, two types of electrically coupled neurons,
the AB and PD neurons, form the pacemaker ker-
nel of this CPG (30, 44, 48). These neurons possess
intrinsic bursting properties (83, 123) and are
rhythmically active in phase with the pyloric
rhythm, and stimulating these neurons resets the
rhythm (48). Yet, when lesioning AB, PD, or other
core neurons within this network, additional
rhythmogenic mechanisms allow the pyloric
rhythm to continue (FIGURE 3B) (48, 129). Thus

FIGURE 2. Characteristics of an identified rhythmogenic neuron in the
respiratory central pattern generator of the locust
A: the neuron (subesophogeal ganglion interneuron 378) is active in phase with the
rhythm (criterion 1), as indicated by intracellular recording of spiking activity (black)
concurrent with expiratory muscle EMG activity (purple). B: stimulation of the neuron
resets the respiratory rhythm (criterion 2). Direct current stimulation of subesopho-
geal ganglion interneuron 378 shortens the perturbed respiratory cycle relative to a
spontaneous cycle. Resetting characteristics for the neuron are visualized in a phase-
shift plot, demonstrating stimulus phase-dependent resetting of the rhythm. Data
pooled from experiments in three different animals. A and B are adapted from Ref.
102 with permission from the Journal of Neurophysiology.
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these neurons are not “obligatory” for rhythmo-
genesis, even though they are interconnected with
all other rhythmogenic neurons and are important
elements of the normal operation of this rhythm-
generating network. These experiments have im-
portant general implications: although lesioning a
neuron or neuron group can provide insight into
its functional role (29, 30, 129), the persistence of a
rhythm, i.e., the finding that a neuron or neuron
group is not obligatory for rhythmicity, does not
negate its important role in rhythmogenesis.

Conversely, there are many reasons why a neu-
ron or neuron group may be obligatory for rhyth-
micity, but not rhythmogenic. For example,
removing descending drive to the STG stops
rhythmic activity produced by the pyloric net-
work (FIGURE 3C). However, rhythmicity can be

reestablished by tonic, non-rhythmic electrical
stimulation of the descending input. Therefore,
it is a tonic neuromodulatory influence rather
than a rhythmic drive that makes this descend-
ing input obligatory (129). Indeed, the synaptic
and intrinsic properties of the pyloric neurons are
tuned such that their rhythmogenic properties are
dependent on neuromodulation (143). Although
rhythmicity ceases upon acute removal of neuro-
modulatory input, after several days, rhythmicity
returns spontaneously in a neuromodulator-inde-
pendent mode as mechanisms of homeostatic plas-
ticity reestablish a balance of ionic and synaptic
conductances (65, 73, 143) (FIGURE 3D). Indeed, it
seems that rhythmogenic networks are more plastic
and adaptable if their membrane properties are
tuned to be neuromodulator-dependent. These

FIGURE 3. The rhythmogenic role of an element may not be determined solely based on whether it is obligatory
A: schematic of the crustacean stomatogastric nervous system and intracellular recordings of identified stomatogastric ganglion neurons of the py-
loric rhythm generator (AB, anterior burster; PD, pyloric dilator; LP, lateral pyloric; PY, pyloric). The electrically coupled AB and PD neurons have
autonomous bursting properties and comprise the “pacemaker kernel.” These neurons are active in phase with rhythmic motor output (purple) and
can also reset the rhythm. Adapted from Ref. 77, with permission from the Annual Review of Physiology. B–C: schematic of the pyloric rhythm-gen-
erating circuit. All synapses are inhibitory; resistor indicates electrical connections. B: in the presence of descending neuromodulatory drive, silenc-
ing the AB/PD pacemaker kernel does not abolish rhythmogenesis. C: subsequent removal of neuromodulatory drive eliminates the rhythm;
however, it can be restored with artificial tonic stimulation (129). D: the extent to which a given mechanism is obligatory for rhythmogenesis may be
altered by plasticity. Spontaneous rhythmicity of the pyloric rhythm generator is initially lost following removal of neuromodulatory inputs. However,
rhythmicity returns as the rhythm-generating properties of the network adapt. Adapted from Ref. 143, with permission from the Journal of
Neurophysiology.
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considerations illustrate why being “obligatory” or
“not obligatory” for rhythmogenesis cannot be un-
ambiguously used to either identify or negate a
neuron’s role as a rhythmogenic element. Instead,
for a neuron or neuron group to be considered
rhythmogenic, it must be active in phase with the
network rhythm and be able to reset the rhythm
when stimulated.

Defining Rhythmogenic Elements in
the Mammalian Respiratory
Network

Similar to the crustacean model network discussed
above, there are numerous neuromodulatory in-
puts to the rhythmogenic networks underlying
mammalian breathing (25, 77). Based on the prin-
ciples learned in invertebrates, removal of modu-
latory inputs should be expected to produce
drastic changes in the breathing rhythm. Indeed,
early lesion experiments that sectioned the brain
stem at the mid-pontine level together with the
transection of the vagus nerves caused “apneusis,”
prolonged inspiratory activity (71, 72, 98). These
findings led to the concept of a “pneumotactic
center” within the pons and contributed to the
idea that the pons has an important role as an
“inspiratory off-switch mechanism.” However,
such lesion experiments can only provide limited
insights into the rhythmogenic role of the pons.
Many early investigators were fully aware of these
limitations. In von Euler’s publication (155) on the
potential existence of a pontine “off-switch” mech-
anism, he carefully stated, “it must be emphasized,
however, that so far there is only correlational ev-
idence for the proposed functions of any of these
neurons.” Yet, these concepts remain influential to
this day, despite convincing studies demonstrating
that the medulla can generate rhythmic breathing
in the absence of the pons and sensory feedback
(14, 46, 125). Although there is no doubt that the
pons, including the Kölliker-Fuse region, plays an
important role in the integration of sensory inputs
and the modulation of the respiratory rhythm
(26), it has yet to be convincingly demonstrated
that the pons is a respiratory CPG, i.e., can be
rhythmogenic when isolated. Moreover, evi-
dence that selectively stimulating identified
rhythmically active pontine neurons can reset
the respiratory rhythm is, to the best of our
knowledge, still missing. Thus we conclude that
the pons provides important neuromodulatory
inputs to the rhythm-generating neurons of the
medulla, but whether the pons, or a region
within the pons, plays a role in generating the
breathing rhythm remains to be determined.

The mammalian breathing CPG, as identified
within the medulla (FIGURE 4A), lacks the

anatomical specificity of smaller invertebrate
rhythm-generating networks that allow repeated
identification of individual neurons with consis-
tent functional roles (see FIGURES 2 AND 3).
However, the criteria used to define an element
of a rhythm-generating network may still be ap-
plied to specific subtypes of neurons in the
mammalian medulla. Two landmark studies
identified a specific class of excitatory, glutama-
tergic neurons within the preBötC (13, 38). These
neurons are derived from precursors that express
the transcription factor Dbx1. Many Dbx1-lineage
neurons are rhythmically active in phase with in-
spiration (3, 45, 97) (FIGURE 4B), and optogenetic
stimulation of these neurons resets the rhythm
produced by the preBötC in isolated medullary
slices in vitro, as well as the breathing rhythm
produced by intact mice in vivo (9, 19, 149, 150)
(FIGURE 4C). Thus these neurons fulfill the criteria
indicative of elements of a rhythm-generating net-
work. In addition to these principle criteria for
rhythmogenesis, Dbx1 neurons also seem to be
obligatory, because silencing these neurons in
medullary slices (157, 158) or in adult mice (150)
stops or significantly disrupts the breathing
rhythm. Thus there is little doubt that Dbx1 pre-
BötC neurons are core elements of the respiratory
rhythm-generating network. It must be empha-
sized, however, that Dbx1 neurons are not a func-
tionally homogenous population. Some Dbx1
neurons may play a more significant role in pattern
vs. rhythm generation (or vice versa) (19, 117, 158),
and some may have other non-respiratory func-
tions such as modulation of arousal (163). Further
identification and characterization of the specific
subset of Dbx1 neurons that contribute to rhyth-
mogenesis should be an important avenue of con-
tinued research.

The preBötC also contains many types of neu-
rons that are not derived from Dbx1 precursors.
Among preBötC neurons that are functionally
active in phase with inspiration, an estimated
37% are inhibitory (9). These neurons, character-
ized by the vesicular GABA transporter (Vgat),
are activated concurrently with Dbx1 neurons
(FIGURE 4B), and optogenetic stimulations of
these neurons elicit a stimulus phase-dependent
reset of the breathing rhythm both in vitro and in
vivo (FIGURE 4C) (9, 130). Thus inhibitory pre-
BötC neurons, like Dbx1 neurons, fulfill the prin-
ciple criteria that define a neuron as being an
element of a rhythm-generating network.

Excitatory and inhibitory neurons are both im-
portant for controlling rhythmicity in the preBötC,
and their interactions have been explored in mod-
eling studies (43). However, these neuronal popula-
tions have different functional roles with distinct
resetting characteristics (FIGURE 4C). Interestingly,
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during the inspiratory phase, concurrent with
preBötC population bursts, stimulation of excitatory
Dbx1 neurons delays the onset of the subsequent
breath. In contrast, the equivalent stimulation of in-
hibitory Vgat neurons advances the next breath (9).
During the expiratory phase, between preBötC pop-
ulation bursts, stimulation of Dbx1 neurons can ad-
vance the subsequent breath. However, as will be
discussed in detail below, this effect is limited by
refractory properties of Dbx1 neurons. Conversely,
stimulation of inhibitory neurons during the expira-
tory phase has distinct effects depending on the ex-
perimental preparation: in vivo, the next breath is
delayed (9, 130), and during the much slower fre-
quencies generated in vitro, post-inhibitory rebound
advances the next breath (9, 17). These experiments
serve as an important general reminder that, unless

specific neurons are selectively stimulated during
their active phase, it is difficult to determine whether
and how they contribute to rhythmogenesis. Further-
more, since it has been repeatedly demonstrated that
blockade of synaptic inhibition may alter, but does
not stop, the preBötC rhythm (54, 166), these exper-
iments further illustrate how a given element may
play an important role in rhythmogenesis without
being obligatory.

The Relationship Between
Synchronization and the Duration
of a Rhythmic Cycle
Mechanisms of Refractoriness

Like other rhythmic systems (64, 74, 126, 138, 162,
167), the preBötC has an inherent refractoriness

FIGURE 4. Rhythmogenic roles of excitatory and inhibitory neurons in the mammalian breathing CPG
A: the pre-Bötzinger Complex (preBötC) continues to produce a rhythm (purple) that is in phase with inspiratory hypoglossal (XII) motor output
(black) when isolated in medullary slices from neonatal mice. The preBötC is also active in phase with inspiratory motor activity in intact adult mice.
B: excitatory (red) and inhibitory (blue) preBötC neurons are concurrently active in phase with rhythmic inspiratory activity (purple). Intracellular cur-
rent-clamp recordings of genetically identified Dbx1! (excitatory) and Vgat! (inhibitory) neurons active with integrated extracellular preBötC popu-
lation bursts generated in vitro. C: optogenetic stimulation of excitatory (Dbx1!) or inhibitory (Vgat!) preBötC neurons resets the breathing
rhythm in vivo and in vitro. Stimulations can advance or delay the next inspiratory cycle depending on stimulus phase (I, inspiratory phase; E, expi-
ratory phase). Note that postinhibitory rebound advances the next cycle during relatively slow rhythms in vitro but not in vivo. Figure adapted from
Ref. 9, with permission from Nature Communications.
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(4). During rhythmogenesis, recurrently connected
excitatory Dbx1 neurons (and non-Dbx1 neurons)
periodically synchronize and desynchronize within
the preBötC. Following a synchronized population
“burst,” during the early expiratory phase, stimu-
lation of Dbx1 neurons typically fails to evoke an-
other burst, whereas stimulation during late
expiration almost always evokes a burst
(FIGURE 5A) (9, 62). This refractory period follow-
ing synchronized preBötC activity is determined by
at least two mechanisms (FIGURE 5B). 1) High
firing rates during each inspiratory burst deplete
presynaptic vesicles, limiting synaptic transmis-
sion between excitatory neurons until the vesicle
pool is restored (40). This has been observed in
vitro as a progressive reduction in evoked EPSP
amplitude recoded in Dbx1 neurons during re-
peated electrical stimulation of excitatory pre-
synaptic inputs (62). 2) The depolarizing “drive

potential” during each inspiratory burst activates
intrinsic membrane properties that cause a
transient hyperpolarization and reduced excit-
ability of excitatory neurons until resting mem-
brane potential is restored. In Dbx1 neurons
following blockade of synaptic transmission, a
depolarizing current step is followed by afterhy-
perpolarization and reduced spiking evoked dur-
ing smaller current pulses (9). Identifying the
specific ionic conductance(s) underlying this in-
trinsic membrane property should be an impor-
tant next step in unravelling the mechanisms of
refractoriness in the preBötC.

The extent to which refractory mechanisms in-
fluence rhythmogenesis is determined by the
amount of synchronized activity during each pre-
BötC population burst. This is illustrated for differ-
ent patterns of preBötC activity in FIGURE 5C.
During normal “eupneic” bursts (106, 147), recur-

FIGURE 5. The relationship between synchronization, bursting, and refractory mechanisms in the preBötC
A: the preBötC has an inherent refractoriness. The probability of evoking preBötC population bursts by optogenetic stimulation of Dbx1 neurons is
transiently reduced following spontaneous preBötC bursts, i.e., during the refractory period (9) B: synaptic and intrinsic properties of excitatory
Dbx1! neurons contribute to the refractory period (1). Schematic demonstrating presynaptic depression of excitatory synaptic transmission be-
tween preBötC neurons. The amplitude of evoked excitatory postsynaptic potentials (EPSPs; red) recorded in Dbx1 neurons is progressively re-
duced during repeated electrical stimulations (black) of presynaptic inputs (62). 2: intrinsic properties transiently reduce the excitability of Dbx1
neurons following preBötC bursts. Intracellular current-clamp recording of a synaptically isolated Dbx1 neuron demonstrating membrane afterhyper-
polarization (AHP) and transiently reduced spiking following an initial, larger depolarizing burst (9). C: schematic representing the different amounts
of synchronization during distinct patterns of preBötC activity (purple) and associated hypoglossal (XII) motor output (black). During burstlets, syn-
chronization is weak, bursting currents are only activated in some neurons, and the refractory period is minimal. During normal “eupneic” bursts,
synchronization is strong and bursting currents are activated in many neurons, resulting in a period of relative refractoriness. During periodic sigh
bursts, synchronization is very strong and bursting currents are strongly activated, leading to large depolarizing drive potentials in preBötC neurons
and an exaggerated refractory period. Note that strong synchronization facilitated by activation of bursting currents promotes successful transmis-
sion of preBötC activity to XII motor output.
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rent synaptic excitation and intrinsic bursting
currents (discussed in detail below) strongly
synchronize preBötC neurons, leading to a re-
fractory period. As neurons recover from the re-
fractory period, recurrent excitation can begin to
initiate another cycle. During much weaker syn-
chronizations, referred to as “burstlets” (56), low
spiking rates and small drive potentials in excit-
atory neurons are expected to elicit a relatively
short refractory period. The opposite is expected
during very strongly synchronized bi-phasic sigh
bursts generated by the preBötC (147), when
long refractory periods likely result in a “post-
sigh apnea” (9). These considerations illustrate
how rhythm generation (i.e., cycle period) and
pattern generation (i.e., burst amplitude) can be
interdependent processes (see FIGURE 1E).

Intrinsic Bursting

An important mechanism that promotes synchro-
nization is the activity of intrinsic bursting proper-
ties, sometimes also referred to as “pacemaker
properties.” First described in small invertebrate
neuronal networks (see, e.g., Refs. 5, 122), intrinsic
bursting is a fundamental feature of most, if not all,
neuronal networks (8, 21, 69, 70, 114, 142, 146,
148). Although, these intrinsic bursting properties
allow neurons to generate bursts of action poten-
tials in the absence of synaptic input, this is rarely
the case in a functional network where neurons are
bombarded by excitatory and inhibitory synaptic
inputs. In this context, bursting neurons play a
critical role as nonlinear amplifiers of synaptic
drive (107). In the preBötC, it is thought that in-
trinsic bursting properties mediate the transition
of weakly synchronized burstlets into normal in-
spiratory bursts (111) (FIGURE 5C). The transition
to the burst also depends on the interplay between
concurrent excitation and inhibition, which will
vary from cycle to cycle for each individual neuron.
If inhibition is predominant or excitability is low,
the bursting threshold may not be reached in
many neurons, which can lead to a burstlet at the
population level (56, 57, 110, 111). We refer to
this balance between excitation, inhibition, and
intrinsic bursting as the rhythmogenic triangle
(FIGURE 6): the onset and synchronization of a
rhythmic cycle, as well as the resulting refractory
period, will depend on the close interdepen-
dence between these three principle rhythmo-
genic mechanisms (103).

Intrinsic bursting can be mediated by a variety of
voltage- or calcium-dependent mechanisms. In the
preBötC, the persistent sodium current (INaP) is an
important voltage-dependent bursting mecha-
nism, whereas the calcium-activated nonselective
cation current (ICAN) is largely voltage-indepen-
dent, but dependent on the intracellular calcium

concentration (10, 18, 45, 94). Neuromodulators
(e.g., norepinephrine, serotonin, and substance P)
can differentially modulate INaP- and ICAN-depen-
dent bursting properties, allowing the network to
amplify synaptic inputs in a voltage- and calcium-
dependent manner (94 –96, 151–153). Whether
these bursting properties can be homeostatically
adjusted, similar to bursting in the pyloric rhythm
generator of the crustacean (see FIGURE 3C), re-
mains unknown. Nevertheless, the ability to differ-
entially modulate bursting characteristics among
subsets of preBötC neurons is likely one mecha-
nism that contributes to the impressive flexibility
of the breathing rhythm.

Integrated Local Inhibition

Synaptic inhibition plays a critical role in regulat-
ing synchronization (43). Bursting properties of
preBötC neurons are suppressed by inhibition
(148), and in the absence of synaptic inhibition,
Dbx1 neurons become hyperactive and synchro-
nize more efficiently. However, this results in long
refractory periods and, in vivo, such slow breathing
frequencies are not physiologically sustainable.
Conversely, increasing the activity of inhibitory
neurons during inspiration weakens synchroniza-
tion, which dramatically accelerates breathing (9).
Indeed, modulation of refractory mechanisms can
explain the phase-dependent resetting character-
istics of inhibitory neurons (see FIGURE 4C). Acti-
vation during inspiration weakens synchronization
of the inspiratory network and reduces the refractory
period, whereas activation of inhibitory neurons dur-
ing expiration slows breathing, presumably by dis-
rupting the propagation of excitatory activity through
the network. Thus, by regulating the synchronization
of excitatory neurons, the activation of bursting
properties, and the subsequent refractory period, in-
hibitory neurons exert a powerful influence on
breathing frequency. However, there must be a pre-
cise balance of excitation and inhibition in the pre-
BötC, as indicated by computational models (43): too
much inhibition integrated within the network de-
synchronizes and irregularizes the rhythm until it
eventually falls apart. Future modeling studies
should be useful to better understand how the bal-
ance between excitation and inhibition controls re-
fractory mechanisms, cycle duration, and the
stability of the preBötC rhythm.

Network Connectivity

As mentioned previously, the preBötC lacks the
same level of anatomical specificity available in
smaller invertebrate rhythm-generating networks
(see FIGURES 2 AND 3). As a result, we are far from
having established a detailed connectome of the
rhythmogenic network that gives rise to mamma-
lian breathing. Moreover, it is unknown to what
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extent network connectivity is unique among
individuals and whether connectivity may be
altered throughout life by synaptic plasticity. How-
ever, a functionally important property of the pre-
BötC seems to be sparsity. Combined modeling
and experimental studies suggest that sparse con-
nectivity contributes to the high degree of stochas-
ticity and onset variability that is observed in the
activity of individual preBötC neurons in medul-
lary slices (15, 16), but also among neurons re-
corded in vivo (68, 87, 127). These computational
models predict that networks with sparse connec-
tivity can have weakly synchronized cycles (i.e.,
burstlets), and that close to 300 excitatory neurons
need to synchronize to maintain network activity
with regular burst frequency and amplitude (15,
16). These modeling studies also predict that con-
nectivity within the preBötC is tuned near the limit
of network stability, which may endow the network
with a great deal of flexibility, but in some cases
may make it vulnerable to pathology. For example,
the preBötC rhythm becomes irregular, and weak
synchronizations become more common in neo-
natal mice chronically exposed to intermittent

episodes of hypoxia (35, 36). These weak burstlets
generated in the preBötC fail to fully activate
hypoglossal (XII) motoneurons, leading to breath-
ing cycles without XII motor output (110)
(FIGURE 5C). This finding has important clinical
implications in the context of obstructive sleep
apnea, where patients experience chronic inter-
mittent hypoxia and have reduced inspiratory
drive to muscles of the upper airway (innervated by
the XII nerve), making it prone to collapse (105).

Integrated Rhythmogenesis

Overall, existing data suggest that respiratory
rhythmogenesis is not the deterministic result of a
single homogenous mechanism. However, history
has shown that semantics can cause widespread
confusion, and invertebrate networks can once
again serve as an important reminder. In the STG,
a “pacemaker kernel,” consisting of the AB-PD
bursting neurons, is important for rhythmogenesis.
This may imply that bursting properties of these
two cells are the primary determinants of rhyth-
mogenesis. Yet, many characteristics of bursting

FIGURE 6. A contemporary view on the origins of mammalian breathing
The triple oscillator hypothesis (6) proposes that each breathing phase is generated by a distinct microcircuit in the
medulla: the preBötzinger complex (preBötC) generates inspiration, the postinspiratory complex (PiCo) generates
postinspiration, and the lateral parafacial region (pFL) generates active expiration. Each oscillator is coupled by ex-
citatory and inhibitory connections, although inhibition typically dominates to coordinate the timing of each breath-
ing phase. As shown in the preBötC, rhythmicity within each microcircuit is controlled by a balance between
recurrent synaptic excitation, inhibition, and intrinsic bursting properties, i.e., the rhythmogenic triangle (103). A
gradient of rhythm (purple) and pattern (gray) generating properties can be independent or interdependent de-
pending on the connectivity between specific rhythm, premotor, and motor elements. The activity of rhythm- and
pattern-generating elements can be differentially tuned by various modulatory inputs (red) to endow breathing with
exquisite metabolic-, state-, and behavior-dependent control.
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neurons and their temporal activation depend on
the dynamic integration of multiple neuromodula-
tory and synaptic mechanisms as well as the inter-
action with other rhythmogenic neurons of the
STG network (see FIGURE 3A). Thus the desire to
identify and attribute rhythmogenesis to one es-
sential rhythmogenic mechanism may not reflect
how a network actually operates. A popular hy-
pothesis for respiratory rhythmogenesis, the so
called “group pacemaker hypothesis,” posits that
periodic inspiratory bursts originate from intrinsic
currents that are ordinarily latent until synaptically
evoked in the context of network function (116).
This hypothesis describes the integration between
intrinsic and synaptic mechanisms, but by empha-
sizing the synaptic mechanisms that are necessary
to activate the “ordinarily latent, intrinsic” proper-
ties, it infers that excitatory synaptic transmission
is the primary rhythmogenic mechanism (23, 24,
121). However, we suggest that assigning a primary
rhythmogenic mechanism can be misleading. In-
stead, the emphasis should be on the dynamic
integration between synaptic excitation, inhibi-
tion, and intrinsic bursting, which assembles the
respiratory rhythm in a cycle-to-cycle manner. Any
given cycle may occur with or without bursting
properties (103) and also with or without synaptic
inhibition (e.g., in gasping). But it is the dynamic
interplay between heterogeneous mechanisms
that imbues rhythmogenesis with the ability to
support breathing during the many physiological
and pathophysiological conditions that may occur
throughout life.

Coupled Oscillators and the
Multiphase Breathing Rhythm

Thus far we have focused on mechanisms that
govern the inspiratory rhythm generated by the
preBötC. However, despite being a core rhythmo-
genic microcircuit, the preBötC is just one compo-
nent in a wider network; and mammalian
breathing does not only consist of inspiration but
also postinspiration and active expiration (118,
119). Coordination of the three breathing phases
requires a different role for synaptic inhibition.
Instead of controlling synchronization as discussed
above, synaptic inhibition needs to control the
temporal sequence of each breathing phase (119).
However, consistent with the compartmental
model (124, 131–133), computational network
models predict that inhibition cannot generate
multiple phases within the preBötC alone (43).
Specifically, to generate neurons that are inhibited
during inspiration and active during expiration,
the fraction of inhibitory neurons within the net-
work needs to be increased. Yet, increasing inhibi-
tion desynchronizes network activity, and only a

small number of neurons (maximally ~15%) can be
forced to fire during the expiratory phase before
rhythmicity falls apart (43). Indeed, experimental
data indicate that only a small fraction of preBötC
neurons are active out of phase with inspiration
(15, 16, 131). Thus the computational model makes
an important prediction: to produce a multiphase
rhythm, multiple independently rhythmic net-
works must be coupled by synaptic inhibition.
Such networks have been identified in the medulla
as the postinspiratory complex (PiCo), active dur-
ing postinspiration (6, 7), and the lateral parafacial
nucleus (pFL), a subdivision of the retrotrapezoid
nucleus/parafacial respiratory group (RTN/pFRG)
region that is recruited during active expiration
(49, 50).

The PiCo, located rostral to the preBötC, contin-
ues to produce a rhythm when isolated in a med-
ullary slice, contains neurons that are rhythmically
active in phase with postinspiration, and stimula-
tion of these neurons resets the rhythm in vitro and
in vivo (6). Thus the PiCo fulfills all criteria that
define a rhythmogenic network or CPG. PiCo neu-
rons (or at least a subset of them) are characterized
by a glutamatergic, cholinergic transmitter pheno-
type. Cholinergic signaling seems to have primar-
ily modulatory functions, whereas, like the
preBötC, glutamatergic transmission is required
for synchronization of the network. GABAergic
inhibition establishes the phase relationship be-
tween the PiCo and the preBötC; however, to
what extent inhibition also regulates synchroni-
zation and refractory mechanisms within the
PiCo is still unknown. Further characterization of
the rhythmogenic elements within PiCo and
their role in the generation of postinspiration
and potentially other behaviors, such as vocal-
ization, will be critical to gain further insights
into the functional implications of this medullary
microcircuit.

The RTN/pFRG is located rostral to the preBötC
and ventral to the PiCo (49, 50, 52). This region has
been subdivided into rhythmic lateral (pFL) and
non-rhythmic ventral (pFV) areas (49). However,
the degree to which these areas are distinct is a
matter of debate. The pFL is typically silent but
becomes rhythmic when disinhibited (92). In adult
rodents, rhythmicity in the pFL depends on (pre-
sumably tonic) excitation from the preBötC (50).
However, in younger rodents, the pFRG region can
generate a rhythm without rhythmic preBötC ac-
tivity (52, 139), even when physically isolated
from the preBötC (91). In vivo, neurons in the
pFL fire during active expiration, and stimulation
of the pFL evokes expiratory activity and resets
the breathing rhythm (92), presumably through
inhibitory interactions with the preBötC (49). Neu-
rons that give rise to rhythmicity within the pFL may
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(90) or may not (92) include neurons that express
Phox2b. However, like Dbx1 neurons in the preBotC,
neurons within the pFL and parafacial region in gen-
eral are heterogeneous, and unraveling exactly which
neuronal subtypes are responsible for rhythmogen-
esis, chemosensation, and blood pressure regulation
is an important research avenue (41, 42, 90, 91).

As illustrated in the invertebrate STG network
(102), CPGs are often tuned to neuromodulation to
allow precise control of rhythmic behavior. In this
context, it is interesting that the three coupled
oscillators for breathing are differentially tuned
with regard to their sensitivity to neuromodulators.
For example, the PiCo is strongly stimulated by
norepinephrine and inhibited by somatostatin and
the "-opioid agonist DAMGO (6). In contrast, the
pFL is strongly activated by acetylcholine (12) but is
insensitive to opioids (52, 80). The enhanced sen-
sitivity of the PiCo and pFL to neuromodulation
may contribute to their higher threshold for rhyth-
micity, which is likely an important property allow-
ing these networks to be rhythmic only during the
appropriate metabolic, environmental, or behav-
ioral context. The preBötC is also regulated by a
host of neuromodulators (25). However, the pre-
BötC has a relatively low threshold for rhythmicity
and less dependence on neuromodulatory input,
reflecting its role as the “master clock” for breath-
ing-related behaviors (86) and the paramount im-
portance of the inspiratory phase in mammalian
breathing.

Conclusions and Open Questions

A contemporary view on the origins of mammalian
breathing is conceptualized in FIGURE 6. The or-
ganization of the breathing network is consistent
with the idea that rhythmic activity emerges from
the interactions between three coupled oscillators,
in which each phase, inspiration, postinspiration,
and active expiration, is generated within the me-
dulla by its own dedicated microcircuit, referred to
as the “triple oscillator hypothesis” (7). The dy-
namic balance between recurrent synaptic excita-
tion, inhibition, and intrinsic bursting properties,
i.e., the “rhythmogenic triangle” (103), controls
synchronization within each microcircuit, al-
though this concept has yet to be tested in the PiCo
and pFL. Mutually inhibitory interactions between
the microcircuits seem to control the temporal se-
quence of the rhythm generated by the network.
However, interactions between the PiCo and pFL

have not been described. Rhythmogenic microcir-
cuits project to premotor and motor pools, and the
connectivity of a given element will determine its
role in rhythm generation, pattern generation, or
both. The complex integration of the network with
the rest of the central and peripheral nervous

system allows exquisite modulation of all rhythm-
and pattern-generating elements. This complex or-
ganization may have evolved in mammals to
match their increased metabolic and behavioral
demands on breathing (104).

An important next step in understanding the
breathing rhythm will be to examine in further
detail how the three rhythmogenic microcircuits
interact. Indeed, the triple oscillator hypothesis
and the concept of the rhythmogenic triangle raise
many unresolved questions: How is the so-called
Bötzinger complex (124, 131, 132) integrated with
the three rhythmogenic microcircuits? Are there
separate sets of inhibitory neurons dedicated to
controlling synchronization within the microcir-
cuits and temporal control between them? How
dynamic are these interactions? Do burstlets,
bursts, and sighs generated by the preBötC differ-
entially activate or inhibit the other rhythmogenic
microcircuits? A sigh associated with arousal may
be differentially connected to the expiratory net-
works than a sigh of relief. Do hypoxic and hy-
percapnic conditions differentially alter and
reconfigure these microcircuits? How do the
roles of rhythmogenic elements within and the
interactions between each microcircuit change
during the variety of non-ventilatory behaviors,
such as coughing and swallowing, that are
known to involve reconfiguration of the network
(11, 67, 99, 128)? As discussed here for the pre-
BötC, it will be important to unravel to what
extent the neurons active during non-ventilatory
behaviors can be identified as belonging to mul-
tiple CPGs. Specifically, do neurons that reset
breathing also reset other rhythmic behaviors
like swallowing and coughing? The discovery of
more functionally specific molecular and genetic
markers should allow exploration of these possi-
bilities. Along the way, principles learned from
invertebrate networks can continue to provide
guidance in unraveling the reconfiguration and
control of different, yet partially overlapping,
rhythmic behaviors (102, 108, 109, 159).

Many additional open questions relate to the
supramedullary control of breathing and the func-
tional integration of the breathing rhythm with
higher brain regions. It is well known that breath-
ing is under cognitive and emotional control, likely
involving descending control from regions such as
the parabrachial nucleus, the hypothalamus, the
periaqueductal gray, various limbic regions, and
the prefrontal and anterior cingulate cortex (20, 26,
28, 47, 58, 84, 89, 136, 165). All of these regions are
likely connected with the rhythmogenic microcir-
cuits in the medulla to regulate breathing; and this
detailed connectivity is beginning to be worked out
(164). There are also important ascending influ-
ences of the breathing rhythm that may contribute
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to the function of supramedullary regions. Activity in
the prefrontal cortex, the locus coeruleus, hippocam-
pus, and olfactory bulb can all be modulated by the
breathing rhythm (55, 59, 61, 81, 85, 88). Indeed,
breathing has been described as a global timing
mechanism in the brain (144, 145). Thus, in addition
to its critical role in regulating blood gasses, breath-
ing likely also plays an important role in regulating
higher brain functions and emotions. Yet, how the
rhythmogenic microcircuits in the medulla are con-
nected with supramedullary regions and the func-
tional implications of this ascending integration are
only beginning to be revealed (163). Perhaps one
day we will understand the neuronal mecha-
nisms of why we sigh when we are sad, in love, or
relieved (101); why we sometimes feel “inspired”;
and why panic attacks and fear can be controlled
with breathing (60, 82, 154). Although it has
taken almost a century to unravel the basic med-
ullary circuitry underlying generation of the
mammalian breathing rhythm, we are in an ex-
citing time when powerful new experimental ap-
proaches promise rapid progress toward
understanding these important unanswered
questions. !
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